# bitwise or'ing rows

3 messages
Open this post in threaded view
|
Report Content as Inappropriate

## bitwise or'ing rows

 Hi If I have an n x m array of bools, is there a handy way for me to perform a 'bitwise_and' or 'bitwise_or' along an axis, for example all the rows or all the columns? For example a = [[1,0,0,0],   [0,0,1,0],   [0,0,0,0]] (0 and 1 meaning True and False) a.bitwise_or(axis=0) giving [1,0,1,0] Best regards, Mads -- +---------------------------------------------------------------------+ | Mads Ipsen                                                          | +----------------------------------+----------------------------------+ | Overgaden Oven Vandet 106, 4.tv  | phone:              +45-29716388 | | DK-1415 København K              | email:      [hidden email] | | Denmark                          | map  : https://goo.gl/maps/oQ6y6 | +----------------------------------+----------------------------------+ _______________________________________________ NumPy-Discussion mailing list [hidden email] https://mail.python.org/mailman/listinfo/numpy-discussion
Open this post in threaded view
|
Report Content as Inappropriate

## Re: bitwise or'ing rows

 On Tue, Apr 4, 2017 at 9:14 AM, Mads Ipsen wrote:Hi If I have an n x m array of bools, is there a handy way for me to perform a 'bitwise_and' or 'bitwise_or' along an axis, for example all the rows or all the columns? For example a = [[1,0,0,0],  [0,0,1,0],  [0,0,0,0]] (0 and 1 meaning True and False) a.bitwise_or(axis=0) giving [1,0,1,0]I think what you want is equivalent to np.all(a, axis=0) for bitwise_and and np.any(a, axis=0) for bitwise_or.You can also use the more verbose np.bitwise_and.reduce(a, axis=0) and np.bitwise_or.reduce(a, axis=0).Jaime  Best regards, Mads -- +---------------------------------------------------------------------+ | Mads Ipsen                                                          | +----------------------------------+----------------------------------+ | Overgaden Oven Vandet 106, 4.tv  | phone:              +45-29716388 | | DK-1415 København K              | email:      [hidden email] | | Denmark                          | map  : https://goo.gl/maps/oQ6y6 | +----------------------------------+----------------------------------+ _______________________________________________ NumPy-Discussion mailing list [hidden email] https://mail.python.org/mailman/listinfo/numpy-discussion -- (\__/)( O.o)( > <) Este es Conejo. Copia a Conejo en tu firma y ayúdale en sus planes de dominación mundial. _______________________________________________ NumPy-Discussion mailing list [hidden email] https://mail.python.org/mailman/listinfo/numpy-discussion